Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(2): e0173923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38240563

RESUMO

Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.


Assuntos
Fungicidas Industriais , Microbiota , Praguicidas , Abelhas , Animais , Fungicidas Industriais/toxicidade , Praguicidas/toxicidade , Nitrilas
2.
Ecol Evol ; 13(12): e10692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38111921

RESUMO

Host-associated bacterial microbiomes can facilitate host acclimation to seasonal environmental change and are hypothesized to help hosts cope with recent anthropogenic environmental perturbations (e.g., landscape modification). However, it is unclear how recurrent and recent forms of environmental change interact to shape variation in the microbiome. The majority of wildlife microbiome research occurs within a single seasonal context. Meanwhile, the few studies of seasonal variation in the microbiome often restrict focus to a single environmental context. By sampling urban and exurban eastern grey squirrel populations in the spring, summer, autumn, and winter, we explored whether seasonal rhythms in the grey squirrel gut microbiome differed across environments using a 16S amplicon sequencing approach. Differences in the microbiome between urban and exurban squirrels persisted across most of the year, which we hypothesize is linked to anthropogenic food consumption, but we also observed similarities in the urban and exurban grey squirrel microbiome during the autumn, which we attribute to engrained seed caching instincts in preparation for the winter. Host behaviour and diet selection may therefore be capable of maintaining similarities in microbiome structure between disparate environments. However, the depletion of an obligate host mucin glycan specialist (Akkermansia) during the winter in both urban and exurban squirrels was among the strongest differential abundance patterns we observed. In summary, urban grey squirrels showed different seasonal patterns in their microbiome than squirrels from exurban forests; however, in some instances, host behaviour and physiological responses might be capable of maintaining similar microbiome responses across seasons.

3.
FEMS Microbiol Rev ; 46(2)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35107129

RESUMO

Social bee gut microbiotas play key roles in host health and performance. Worryingly, a growing body of literature shows that pesticide exposure can disturb these microbiotas. Most studies examine changes in taxonomic composition in Western honey bee (Apis mellifera) gut microbiotas caused by insecticide exposure. Core bee gut microbiota taxa shift in abundance after exposure but are rarely eliminated, with declines in Bifidobacteriales and Lactobacillus near melliventris abundance being the most common shifts. Pesticide concentration, exposure duration, season and concurrent stressors all influence whether and how bee gut microbiotas are disturbed. Also, the mechanism of disturbance-i.e. whether a pesticide directly affects microbial growth or indirectly affects the microbiota by altering host health-likely affects disturbance consistency. Despite growing interest in this topic, important questions remain unanswered. Specifically, metabolic shifts in bee gut microbiotas remain largely uninvestigated, as do effects of pesticide-disturbed gut microbiotas on bee host performance. Furthermore, few bee species have been studied other than A. mellifera, and few herbicides and fungicides have been examined. We call for these knowledge gaps to be addressed so that we may obtain a comprehensive picture of how pesticides alter bee gut microbiotas, and of the functional consequences of these changes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Praguicidas , Animais , Abelhas , Lactobacillus , Praguicidas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA